Innovation & Sustainability in Process Chemistry

Parma 6-11-2024

Nitrogen Ring Walk:

a synthetic approach for substitution pattern alteration

Dr. Alessandro Ruffoni

alessandro.ruffoni@RWTH-aachen.de

Institute of Organic Chemistry, RWTH Aachen University

Otto Diels Institute for Organic Chemistry, CAU Kiel

Benzene Substitution Pattern

Proc. Natl Acad. Sci. USA 2007, 16964

Origin & Control of Substitution Pattern

Origin & Control of Substitution Pattern

Synthetic Methods for Substitution Pattern Alteration

Synthetic Methods for Substitution Pattern Alteration

Road Map to Nitrogen Ring Walk

Synthesis of *ortho*-aminophenols

Angew. Chem. Int. Ed. 2023, 62, e202310540

Nitrogen ring walk

Synthesis of *ortho*-functionalized Anilines

rabusertib (Eli Lilly) anticancer

Proparacaine (POEN) anesthetic

Nimesulide (Vifor) anti-inflammatory

ceritinib (Novartis) anticancer

naftopidil (Flivas) α -1 blocker

ortho-CH Etherification

• Limited to HOMe, HOEt

.OMe

• Limited to HOMe, HOEt

Current strategies

Current strategies

New strategy

New Approach for the Synthesis of ortho-Aminophenols

New Approach for the Synthesis of ortho-Aminophenols

2) Nitrogen ring walk along the aromatic ring

Reaction Mechanism

Breaking aromaticity

(a) singlet nitrene formation (c) 6π electrocyclization (e) isomerization (g) 6π electrocyclization (b) azirination (d) nucleophilic addition (f) N-acylation (h) aromatization

Reaction Mechanism

Breaking aromaticity

(a) singlet nitrene formation(b) azirination

(c) 6π electrocyclization(d) nucleophilic addition

(e) isomerization (f) N-acylation (g) 6π electrocyclization (h) aromatization

Re-building aromaticity

Preparation of complex ortho-Aminophenols

Me.

Me

Preparation of complex ortho-Aminophenols

Angew. Chem. Int. Ed. 2023, 62, e202310540

Synthesis of ortho-Aminophenols : Selectivity

 $\langle \neg$

 \bigtriangleup

́<mark>NH</mark> І ТFA

Application in Synthesis of Drugs

Angew. Chem. Int. Ed. 2023, 62, e202310540

Extension to Nitrogen and Sulfur Nucleophiles

RWTHAACHEN UNIVERSITY

Substitution Pattern Alteration via Nitrogen Ring Walk

-Late Stage Exploration of Substitution Pattern Chemical Space

-Nitrogen contains molecule substitution pattern analysis

Substitution Pattern Alteration via Nitrogen Ring Walk

-Late Stage Exploration of Substitution Pattern Chemical Space

substitution pattern alterationaddition extra functionality

Substitution Pattern Alteration via Nitrogen Ring Walk

-Late Stage Exploration of Substitution Pattern Chemical Space

substitution pattern alterationaddition extra functionality

-remove of the extra functionality

A: DMAP (1 eq.), 1,4-dioxane (0.05 M),	B ¹ :NCS (1 eq.), Bi(OTf) ₃ (1 eq.)	B ² :MeOTf (1.5 eq.)	C : Cs ₂ CO ₃ (1 eq.),
hv =390nm, r.t., 16h	1:1 1,4-dioxane/MeCN (0.033 M),	DCM (0.05 M), r.t., 8h.	1:1 MeOH/Acetone (0.05 M)
then TFAA (4 eq.), r.t., 2h	r.t., 6h		,hv =390 nm, r.t., 12h

Arstad, J. Am. Chem. Soc. 2018, 11125; Zhang, Org. Lett. 2022, 8417.

Arstad, J. Am. Chem. Soc. 2018, 11125; Zhang, Org. Lett. 2022, 8417.

Scope of Nitrogen Ring Walk

Ortho-diversification

Ritter, Nature, 2019, 223

Selective para- CH installation of Thianthrenium

Powerful Synthetic Handle

Ortho-diversification

RWTHAACHEN UNIVERSITY

Unpublished

RWTHAACHEN UNIVERSITY

Unpublished

Child, Chem. Comm., 1970, 1581

Unpublished

Α	В	С	D
AlBr ₃ (0.5 eq.), 310 nm,	AlBr ₃ (0.5 eq.), 390 nm	TfOH (2-5 eq.), 390 nm	BCF (0.5 eq.), 390 nm
CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CHCl ₃ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h

Α	В	С	D
AlBr ₃ (0.5 eq.), 310 nm,	AlBr ₃ (0.5 eq.), 390 nm	TfOH (2-5 eq.), 390 nm	BCF (0.5 eq.), 390 nm
CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CHCl ₃ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h

Α	В	С	D
AlBr ₃ (0.5 eq.), 310 nm,	AlBr ₃ (0.5 eq.), 390 nm	TfOH (2-5 eq.), 390 nm	BCF (0.5 eq.), 390 nm
CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CHCl ₃ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h

Α	В	С	D
AlBr ₃ (0.5 eq.), 310 nm,	AlBr ₃ (0.5 eq.), 390 nm	TfOH (2-5 eq.), 390 nm	BCF (0.5 eq.), 390 nm
CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CHCl ₃ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h

Alkyl Group Ring Walk : Scope

Alkyl Group Ring Walk : Scope

Α	В	С	D
AlBr ₃ (0.5 eq.), 310 nm,	AlBr ₃ (0.5 eq.), 390 nm	TfOH (2-5 eq.), 390 nm	BCF (0.5 eq.), 390 nm
CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CHCl ₃ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h
J.			

Unpublished

Alkyl Group Ring Walk : Scope

Α	В	С	D	E
AlBr ₃ (0.5 eq.), 310 nm,	AlBr ₃ (0.5 eq.), 390 nm	TfOH (2-5 eq.), 390 nm	BCF (0.5 eq.), 390 nm	TfOH (2-5 eq.), 310 nm,
CH ₂ Čl ₂ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CHCl ₃ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h

Α	В	С	D	E
AlBr ₃ (0.5 eq.), 310 nm,	AlBr ₃ (0.5 eq.), 390 nm	TfOH (2-5 eq.), 390 nm	BCF (0.5 eq.), 390 nm	TfOH (2-5 eq.), 310 nm,
CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CHCl ₃ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h	CH ₂ Cl ₂ (0.1 M), r.t., 16 h

Substitution Pattern Alteration Reactions

Substitution Pattern Alteration: Directionality

RWTHAACHEN UNIVERSITY

Substitution Pattern Alteration: Directionality

Single Nitrene delocalization-insertion

Inherent directionality

Substitution Pattern Alteration: Directionality

Protonation and Absorption are fundamental for the directionality

Group translocation can be controlled by different wave length

Photochemistry for Benzene Substitution Pattern Alteration

Photochemistry Rearrangements :

Sustainable : Avoids precious metals like iridium, platinum, and ruthenium.

Energy Efficiency: No heat required, with the potential to harness solar light as an energy source (energy savings)

Atom Economy: Promotes highly efficient photochemical transformation, all atoms are already into the final product.

Proc. Natl Acad. Sci. USA 2007, 16964

Acknowledgment Institute of Organic Chemistry, RWTH Aachen University

Prof. Daniele Leonori

Nitrogen ring walk

Giovanni Lenardon

Xheila Yzeiri

Dr. Bo Liv

Alkyl ring walk

Maialen Alonso Dr. Giovanni Leonardi Baptist Roure Dr. Enrique Arpa

The Organizers of Innovation & Sustainability in Process Chemistry for the invitation

All of you for your kind attention

Moving soon to Otto Diels Institute for Organic Chemistry, Kiel, Germany PhD and PDRA positions open to join the group alessandro.ruffoni@RWTH-aachen.de

Selectivity

Alkyl Group Ring Walk - Mechanism

Unpublished

Riera, Org. Lett., 2001, 3197 X